STRUCTURALLY DIFFERENT DIVALENT METALLASILOXANES [Mg{O(Ph₂SiO)₂}₂]μ-(LiPy)-μ-{(LiPy)₃(OH)(Cl)}], [Cr{O(Ph₂SiO)₂}₂-μ-(LiPy₂)₂], AND [{O(Ph₂SiO)₂}Co{O(Ph₂SiO)₃}-μ-(LiPy₂)₂] FROM Ph₂Si(OH)₂/2BuLi AND THE METAL DICHLORIDES

Isaac Abrahams, Michael Lazell, Majid Motevalli, Charlotte K. Simon, and Alice C. Sullivan

Three structurally different metallasiloxanes were formed from reactions between in situ generated suspensions of Ph₂Si(OH)₂/BuLi (1:2) in tetrahydrofuran (THF) with, metal dichlorides MgCl₂·2THF, CrCl₂, or CoCl₂ followed by toluene/Py (Py = pyridine) work-up. The X-ray structures are reported for: $[Mg{O(Ph_2SiO)_2}_2]-\mu-(LiPy)-\mu-\{(LiPy)_3(OH)(Cl)]$ (1) incorporating two six-membered magnesiasiloxane rings and an MgLi₃O₃Cl cubane fragment, $[{O(Ph_2SiO)_2}_2-\mu-(LiPy_2)_2]$ (2) with both six-and eight-membered cobaltasiloxane rings and $[Cr{O(Ph_2SiO)_2}_2-\mu-(LiPy_2)_2]$ (3) with two six-membered chromiasiloxane rings. Structure assembly in these cases is apparently dictated by the metal dichloride. The compound $[{O(Ph_2SiO)_2}Mg{O(Ph_2SiO)_3}-\mu-(CoClPy)_2]\cdotPy$ (4) is formed from $[{O(Ph_2SiO)_2}Mg{O(Ph_2SiO)_3}-\mu-(LiPy_2)_2]$ and $CoCl_2 (1:2)$.

A large number of coordination compounds bearing α,ω -siloxanediolate and silanediolate ligands $[O(R_2SiO)_n]^{2^-}$ have been reported in recent years. These compounds are of interest as precatalysts for olefin polymerization (early ICI and AKZO patent literature) [1, 2], as precursors for metal oxide/silica materials and in connection with possible intermediates in anionic ring opening polymerization of cyclic siloxanes [3, 4]. In many cases [5] the final coordinated α,ω -siloxanediolate ligand is derived from *in situ* oligomerization of a precursor – silanediolate or siloxanediolate. For reactions involving the reagents $[O(Ph_SiOM)_2]$ (M = Li, Na) and various precursor target metal compounds we have identified three distinct outcomes. Firstly, there is intact transfer of ligand to give compounds where the ligand adopts chelate-bridging coordination [6] (simple chelate or bridging modes were found in compounds derived from $O(Ph_2SiOH)_2$) [7, 8]. Secondly, transfer may occur with chain expansion to trisiloxanenediolate OPh_2SiOPh_2O which adopts chelate or chelate-bridging coordination [6]. Finally, the ligand can function as an oxo transfer reagent with elimination of cyclic trisiloxane [9].

Relatively high isolated crystalline product yields (>70% in terms of available silicon) can be obtained in each case, indicating a relatively high degree of product selectivity. Thus for the cases studied the pathways are apparently highly specific to particular reagent pairs.

In this paper we describe some coordination compounds derived from $Ph_2Si(OLi)_2$ and the metal dichlorides $MgCl_2 \cdot 2THF$, $CrCl_2$, and $CoCl_2$.

Department of Chemistry, Queen Mary and Westfield College, London E1 4NS, U.K.; e-mail: a.c.sullivan@qmw.ac.uk. Published in Khimiya Geterotsiklicheskikh Soedinenij, No. 8, pp. 1085-1097, August, 1999. Original article submitted June 4, 1999.

RESULTS AND DISCUSSION

The diolate ligand Ph₂SiO₂²⁻ is not always transferred intact from Ph₂Si(OH)₂ to target metal centers and the outcome varies with precursor metal compound e.g., intact transfer in [Cp2MOSiPh2O]2 (M = Zr, Hf) [2, 10] from Cp₂MCl₂, and oligomerization in [Ti(O(SiPh₂O)₄)₂] [11] from [Ti(OPr-i)₄] and in [Ba₃(O(SiPh₂O)₂)₃] [12] from Ba/NH₃. However, we found that use of the reagents Ph₂Si(OH)₂ /BuLi (1:2), affected the outcome of reaction with Cp2ZrCl2 or Cp*2ZrCl2 in an unexpected way. These reactions gave the unexpected dimeric cyclozirconasiloxane products of [(Cp/Cp*)2TrOSiPh2OLiOH]2 where LiOH is incorporated within the chelatebridging unit $[OSiPh_2OLi(OH)]^{2}$ [13]. In fact the precise identity of the species formed on treatment of Ph₂Si(OH)₂ with BuLi in 1:2 molar ratio in THF is unknown; the combination of these two reagents gives a white suspension. This suspension failed to dissolve in various solvents (THF, toluene, or hexane) with overnight stirring at the reflux temperature. This lack of solubility inhibited our attempts to characterize this material. In contrast, treatment of [O(Ph₂SiOH)₂] with BuLi in 1:2 molar ratio in THF gave a clear solution of the solvated reagent $[O(Ph_2SiOLi)_2)]$ (THF)_n [14]. In addition, the structures of the monolithium and monosodium derivatives of related silane diol t-Bu₂Si(OH)₂, [t-Bu₂Si(OH)(OLi).THF]₄ and [t-Bu₂Si(OH)(ONa).THF]₆ have been reported [15,16]. Despite the ill-defined nature of the product or products from Ph₂Si(OH)₂ /BuLi (1:2) we have used this in situ generated material in reactions with the metal dichlorides MgCb, CrCl₂ and CoCl₂ and isolated the compounds 1, 2, and 3 (molecular cores shown below).

We have previously reported on the reactions between these metal chlorides and the well-defined reagent $[O(Ph_2Si(OLi)_2)]$ and we now compare the products obtained using $Ph_2Si(OH)_2/BuLi$ (1:2). The same procedure was used in each case and the yields of recrystallized products were 75, 52, and 47% for 1, 2, and 3.

SYNTHESIS

[Mg{O(Ph₂SiO)₂}₂]- μ -(LiPy)- μ -{(LiPy)₃(OH)(Cl)] (1). Addition of MgCl₂·2THF in THF to the dense white suspension {Ph₂Si(OH)₂/BuLi(1:2)} in THF in 1:5 molar ratio gave a clear yellow solution from which colorless crystalline [Mg{O(Ph₂SiO)₂}₂]- μ -(LiPy)- μ -{(LiPy)₃(OH)(Cl)] (1) (Fig. 1), was isolated after toluenepyridine work-up. We previously reported on the synthesis of the lithium-bridged magnesiasiloxane compound [{O(Ph₂SiO)₂}Mg{O(Ph₂SiO)₃}- μ -{Li(THF)₂}₂] (5) from MgCl₂·2THF and the well defined reagent [O(Ph₂SiOLi)₂)] in 1:2 molar ratio [17]. Formation of compound 5 involved chain expansion of some of the starting disiloxanediolate giving both six- and eight-membered magnesiasiloxane rings in the product structure. The overall ratio of Mg:Si in compound 5 [{O(Ph₂SiO)₂}Mg{O(Ph₂SiO)₃}- μ -{Li(THF)₂}₂] is 1:5 and we used the 1:5 molar ratio MgCl₂.2THF:Ph₂Si(OH)₂ in the present case to see if compound 5 would form under these conditions. This was not the case. The compound [Mg{O(Ph₂SiO)₂}₂]- μ -(LiPy)- μ -{(LiPy)₃(OH)(Cl)}] (1) was isolated from this reaction in good (75%) yield. The structure incorporates oligomerized silanediolate in two sixmembered magnesium disiloxanediolato rings as part of a lithium bridged spirocyclic unit that is a common structural motif of our work. Some 60% of the silicon available in the reaction is present in the disiloxanediolato ligands of the product. In compound 1, however, there is an additional 4-membered ring present formally constructed

Fig. 1. Molecular structure of compound 1.

from an equivalent each of LiOH and LiCl coordinated to one of the 4-membered magnesialithiooxane, MgO(Si)LiO(Si), rings in the molecule. Hydroxide is coordinated to the magnesium atom and chloride to lithium atom. Thus a cubane fragment is built into one side of the lithium bridged spirocyclic unit. This is the second compound we have derived from Ph₂Si(OH)₂ /BuLi(1:2) where LiOH has been incorporated in the structure. We previously reported on isolation of $[Cp*_2ZrOSiPh_2OLiOH]_2$ from $Cp*_2ZrCl_2$ and Ph₂Si(OH)₂/BuLi(1:2) in ~30% yield as mentioned above. The appearance of single resonances in both the ⁷Li and ²⁹Si solution phase spectra of 1 and the presence of two distinct silicon atom environments and several distinct lithium atom environments in the solid state structure of 1 indicates that the solid state structure of compound 1 is either not retained or is fluxional in solution. The hydroxyl proton could not be unambiguously assigned from the proton NMR spectrum but there is a weak band at 3400 cm⁻¹ in the infrared spectrum.

Fig. 2. Molecular structure of compound 2.

Fig. 3. Molecular structure of compound 3

 $[{O(Ph_2SiO)_2}Co{O(Ph_2SiO)_3}-\mu-(LiPy_2)_2]$ (2). The combination of MgCl₂·2THF and $\{Ph_2Si(OH)_2/BuLi(1:2)\}$ in 1:5 molar ratio did not lead to $[\{O(Ph_2SiO)_2\}Mg\{O(Ph_2SiO)_3\}-\mu-\{Li(THF)_2\}_2]$ (5) as discussed above but surprisingly a similar reaction between CoCk and {Ph₂Si(OH)₂/BuLi(1:2)} in 1:5 molar ratio did give the analogous cobalt compound $[{O(Ph_2SiO)_2}Co{O(Ph_2SiO)_3}-\mu-(LiPy_2)_2]$ (2), (Fig. 2), with the slight difference that in 5 the bridging lithium atom is solvated by THF while in 2 the bridging lithium is solvated by pyridine. We had previously reported the related spirocyclic species [Co{O(Ph2SiO)2}2-µ-(LiTMEDA)2] [18] with two six-membered cobaltasiloxane rings from the reaction between CoC_{k} and $[O(Ph_2Si(OLi)_2)]$. There are no similar examples of cobaltasiloxanes with both 6- and 8-membered rings. We note here that treatment of $[O(Ph_2SiO)_2]Mg[O(Ph_2SiO)_3]-u-{Li(THF)_2}_2]$ with CoCl₂ in 1:2 molar ratio gives a blue crystalline product after toluene-pyridine work-up. The bridging lithium atoms in $[{O(Ph_SiO)_2}Mg{O(Ph_2SiO)_3}-u-{Li(THF)_2}_2]$ have been replaced and elemental analysis of the new compound is in close agreement with the formulation $[{O(Ph_2SiO)_2}Mg{(OPh_2Si)_3O)_2}-\mu-(CoClPy)_2]$ (4). We have previously reported on exchange of the metal ions in both bridging and spiro sites in the related compound $[Co{O(Ph_SiO)_2}_2-\mu-{Li(THF)_2}_2]$ [19].

 $Cr{O(Ph_2SiO)_2}_{2-\mu}-(LiPy_2)_2$ (3). A lithium bridged spirocyclic compound $[Cr{O(Ph_2SiO)_2}_{2-\mu}-(LiPy_2)_2]$ (3) (Fig. 3), having two six-membered chromiadisiloxane rings and no cubane fragment as in 1, was obtained in the reaction between $CrCl_2$ and $\{Ph_2Si(OH)_2/BuLi(1:2)\}$ in 1:5 molar ratio. We have reported earlier [20] on the analogous sodium bridged compound $[Cr{O(Ph_2SiO)_2}_{2-\mu}-\{Na(THF)_2\}_2]$ from $[O(Ph_2SiONa)_2]$ and $CrCl_2$ but we were unable to isolate the lithium bridged species from a similar reaction using $[O(Ph_2SiOLi)_2]$ in place of the disodium reagent $[O(Ph_2SiONa)_2]$.

X-RAY CRYSTALLOGRAPHY

Crystallographic data for compounds 1, 2, and 3 are summarized in Table 1.

Structural Features of [Mg{O(Ph₂SiO)₂}₂-µ-(LiPy)-µ-{(LiPy)₃(OH)(Cl)] (1). The molecular structure of 1 is shown in Fig. 1 and bond lengths and angles in Table 2. The structure was solved by the Patterson method in the centrosymmetric space group Pnma (No. 62). However, the refined structure in this space group indicated significant positional disorder on the pyridine rings located on the mirror plane. The coordinates were transformed to the non-centrosymmetric system Pn21a (No. 33) and an improved refinement obtained with ordered pyridine rings. However, in consequence of the presence of a pseudo-mirror plane in the molecule the esds on bond distances and angles, particularly those associated with the pyridine groups, remain high. The compound adopts an unusual variation of the lithium bridged spirocyclic motif which is commonly obtained from reactions between metal dichlorides and the reagent [O(Ph₂SiOLi)₂]. The common motif has been extended here by addition of LiOH

	Compound 1	Compound 2	Compound 3
Empirical formula	C.H.CILIMANO-SI	Carlla Collis N.O.Siz	C. H. Crilin M.O.Si.
Empirical formula	1244 37	1504 70	
Tomnoroture	1244.37 202(2) K	202(7) V	1207,44 202(2) K
Wayalangth	273(2) K	0.71073 Å	233(2) K
Cantal austam	0.71075 A	0.71075 A	0./10/3 A
Crystal system	Dratomonoic D-21-	D D A D 1	
Space group	Pn21a = 21.028(4) k	P DARI = 14.102(4) Å	P DARI
Unit cell dimensions	a = 21.926(4) A; $\alpha = 90^{\circ}$	a = 14.103(4) A; $\alpha = 88.30(1)^{\circ}$	a = 15.157(5) A; $\alpha = 86.24(3)^{\circ}$
	h = 24.406(5) Å:	b = 14.620(5) Å:	h = 13.489(3) Å:
	$\beta = 90^{\circ}$	$\beta = 81.36(2)^{\circ}$	$\beta = 75.91(3)^{\circ}$
	<i>c</i> = 13.328(3) Å;	c = 20.510(1) Å;	c = 21.553(4) Å;
	γ = 90°	γ = 72.74(1)°.	$\gamma = 62.04(3)^{\circ}$
Volume	7132.8(25) Å ³	3992.1(18) A ³	3271.7(12) Å ³
Ζ	4	2	2
Density (calculated)	1.160 Mg/m ³	1.252 Mg/m ³	1.226 Mg/m ³
Absorption coefficient	0.180 mm ⁻¹	0.347 mm ⁻¹	0.301 mm ⁻¹
F(000)	2592	1574	1260
Crystal size	0.4×0.2 ×0.18 mm	0.5×0.4×0.18 mm	0.40 ×0.35 ×0.28 mm
Theta range for data collection	1.67 to 24.98°.	1.76 to 24.89°.	1.71 to 25.00°.
Index ranges	0<=h<=26.	-15≤ <i>h</i> ≤16,	-14≤ <i>h</i> ≤15,
	0<=k<=27, 0<=/<=15	-13≤ <i>k</i> ≤16, -23≤/≤22	-15≤ <i>k</i> ≤16,0≤/≤25
Reflections collected	6388	14985	12238
Independent reflections	6385	10135	11478
	$[R_{\rm unt} = 0.0000]$	$[R_{int} = 0.0857]$	$[R_{int} = 0.0126]$
Refinement method	Full-matrix	Full-matrix	Full-matrix
	least-squares on F	least-squares on F	least-squares on F*
Data / restraints / parameters	6385 / 0 / 661	10135 / 0 / 858	11478 / 0 / 685
Goodness of-fit on F^2	0.889	0.709	0.952
Final R indices	$R_1 = 0.0977,$	$R_1 = 0.0548,$	$R_1 = 0.0627$,
[<i>I</i> >2 σ (<i>I</i>)]	$wR_2 = 0.2591$	$wR_2 = 0.1063$	$wR_2 = 0.1860$
R indices (all data)	$R_1 = 0.1689,$ $wR_2 = 0.3146$	$R_1 = 0.1108,$ $wR_2 = 0.1160$	$R_1 = 0.1052,$ $wR_2 = 0.2065$
Largest diff. peak and hole	1.755 and -0.437 e.Å ⁻³	0.462 and -0.318 e.Å ⁻³	1.063 and -0.385 e.Å ⁻³

TABLE 1. Crystallographic Data for Compounds 1, 2. Toluene, and 3

and LiCl to give a built-in cubane fragment on one side of the molecule with the hydroxyl coordinated to two lithium atoms and magnesium atom and the chloride coordinated to three lithium atoms. The bond distances and angles within the coplanar magnesiadisiloxanediolate 6-membered rings are similar to those previously found for the 6-membered ring in **5**. Tetrahedral geometry is maintained at silicon. Magnesium atom has approximately square pyramidal stereochemistry and sits slightly below the plane of the equatorial ligating oxygens. The cubane fragment shows some distortion at the site occupied by chlorine where the Li-Cl-Li angles in the range $69.1(7)-72.6(8)^{\circ}$ are small (even allowing for the high esds) compared to the angles at other corners of the cube. Likewise despite the high esds there is some asymmetry about the coordination of Py to Li₍₃₎ with N₍₄₎-Li₍₃₎-O₍₇₎ 141.9(19) and N₍₄₎-Li₍₃₎-O₍₃₎ 122.9(18). However, there are no intermolecular van der Waals interactions that may account for either of these features but there is an intramolecular contact (between C_{58}) on the pyridine ring attached to Li₍₂₎ and Cl₍₁₎ (3.41 Å) which may indicate existence of some hydrogen bonding Cl₍₁₎-H₍₅₈₎.

Bond	Bond length, Å	Bond	Bond length, Å
$Mg_{(1)} - O_{(4)}$	1.989(6)	Si(4)-C(17)	1.889(9)
$Mg_{(1)} - O_{(3)}$	2.016(11)	Si(4)-C(43)	1.984(11)
$Mg_{(1)} - O_{(7)}$	2.019(10)	$O_{(1)}-Li_{(2)}$	1.94(3)
$Mg_{(1)} - O_{(5)}$	2.059(10)	$O_{(1)}-Li_{(1)}$	2.13(3)
Mg(1)-O(1)	2.122(10)	O(3)-Li(3)	1.87(3)
$Si_{(1)} - O_{(1)}$	1.609(10)	O ₍₄₎ -Li ₍₁₎	1.89(2)
$Si_{(1)} - O_{(2)}$	1.640(10)	O(4)-Li(4)	1.99(4)
$Si_{(1)}-C_{(1)}$	1.861(8)	O ₍₄₎ -H ₍₄₎	0.98
$Si_{(1)}-C_{(7)}$	1.887(10)	O(5)-Li(2)	1.96(2)
$Si_{(2)} - O_{(3)}$	1.558(10)	O(5)-Li(4)	2.03(3)
Si ₍₂₎ -O ₍₂₎	1.647(10)	$O_{(7)}$ -Li ₍₃₎	1.80(3)
Si(2)-C(19)	1.843(9)	$Cl_{(1)}-Li_{(1)}$	2.37(2)
$Si_{(2)}-C_{(13)}$	1.897(9)	$Cl_{(1)}-Li_{(2)}$	2.42(2)
$Si_{(3)} - O_{(5)}$	1.584(10)	$Cl_{(1)}-Li_{(4)}$	2.52(4)
Si ₍₃₎ -O ₍₆₎	1.636(11)	$Li_{(1)}-N_{(1)}$	2.00(2)
$Si_{(3)}-C_{(31)}$	1.852(10)	$Li_{(2)}-N_{(2)}$	2.04(2)
$Si_{(3)}-C_{(25)}$	1.903(8)	Li ₍₃₎ -N ₍₄₎	2.06(2)
Si(4)-O(7)	1.615(10)	Li ₍₄₎ -N ₍₃₎	2.09(2)
Si ₍₄₎ -O ₍₆₎	1.624(11)		
Bond	Bond angle, deg.	Bond	Bond angle, deg.
$O_{(4)} - Mg_{(1)} - O_{(3)}$	114.6(5)	Li ₍₃₎ -O ₍₃₎ -Mg ₍₁₎	90.3(9)
$O_{(4)}-Mg_{(1)}-O_{(7)}$	113.5(5)	Li(1)-O(4)-Mg(1)	96.7(8)
$O_{(3)}-Mg_{(1)}-O_{(7)}$	83.4(2)	Li(1)-O(4)-Li(4)	91.9(9)
$O_{(4)} - Mg_{(1)} - O_{(5)}$	89.8(4)	Mg(1)-O(4)-Li(4)	91.2(8)
$O_{(3)} - Mg_{(1)} - O_{(5)}$	155.2(4)	Li(1)-O(4)-H(4)	122.8(8)
$O_{(7)}-Mg_{(1)}-O_{(5)}$	91.1(4)	Mg(1)-O(4)-H(4)	122.9(2)
$O_{(4)}-Mg_{(1)}-O_{(1)}$	87.3(4)	Li ₍₄₎ -O ₍₄₎ -H ₍₄₎	122.9(7)
$O_{(3)}-Mg_{(1)}-O_{(1)}$	92.3(4)	$Si_{(3)}-O_{(5)}-Li_{(2)}$	129.4(9)
$O_{(7)}-Mg_{(1)}-O_{(1)}$	158.6(4)	$Si_{(3)}-O_{(5)}-Li_{(4)}$	109.8(10)
$O_{(5)}-Mg_{(1)}-O_{(1)}$	84.0(2)	LI(2)-O(5)-LI(4)	89.3(12)
$Si_{(1)} - O_{(1)} - Li_{(2)}$	133.0(8)	$S_{1(3)} - O_{(5)} - Mg_{(1)}$	132.8(6)
$Si_{(1)}-O_{(1)}-Li_{(1)}$	117.6(7)	$Li_{(2)} - O_{(5)} - Mg_{(1)}$	92.7(9)
$Li_{(2)} - O_{(1)} - Li_{(1)}$	- 88.9(8)	Li ₁₄₇ -O ₍₅₇ -Mg ₍₁₎	88.0(11)
$Si_{(1)} - O_{(1)} - Mg_{(1)}$	126.3(5)	$Si_{(4)} - O_{(6)} - Si_{(3)}$	131.7(7)
$Li_{(2)} - O_{(1)} - Mg_{(1)}$	91.2(7)	Si(4)-O(7)-Li(3)	135.0(9)
$L_{(1)} - O_{(1)} - Mg_{(1)}$	86.1(6)	$S_{1(4)} - O_{(7)} - Mg_{(1)}$	132.8(6)
$Si_{(1)}-O_{(2)}-Si_{(2)}$	128.8(6)	$L_{1(3)} - O_{(7)} - Mg_{(1)}$	92.0(8)
$SI_{(2)} - O_{(3)} - LI_{(3)}$	134.9(10)	$O_{(1)}-Li_{(2)}-Ci_{(1)}$	99.5(9)
$SI_{(2)} - O_{(3)} - Mg_{(1)}$	133.9(6)	$O_{(5)}-Li_{(2)}-Ci_{(1)}$	103.0(10)
$O_{(1)} = S_{1(1)} = O_{(2)}$	112.9(5)	$N_{(2)}-L_{1(2)}-C_{1(1)}$	103.5(7)
$O_{(3)} - S_{l(2)} - O_{(2)}$	111.2(5)	$O_{(7)}-L_{1(3)}-O_{(3)}$	94.0(7)
$O_{(5)} - SI_{(3)} - O_{(6)}$	109.5(6)	$O_{(7)} = L_{1(3)} = N_{(4)}$	142.1(18)
$O_{(7)}-SI_{(4)}-O_{(6)}$	110.4(5)	O(3)-L1(3)-N(4)	122.8(17)
$U_{(4)} - L_{(1)} - N_{(1)}$	127.2(13)	$O_{(4)} - L_{(4)} - O_{(5)}$	90.3(11)
$O_{(4)}$ - $LI_{(1)}$ - $O_{(4)}$	89.7(9)	$\bigcup_{(4)} = \bigcup_{(4)} = \bigcup_{(3)} $	121.1(14)
$(v_{(1)}-U_{(1)}-U_{(1)})$	125.7(10)		05 2(12)
$U_{(4)} = Ll_{(1)} = Cl_{(1)}$	102.8(9)	$O_{(4)} = L_{1(4)} = C_{1(1)}$	95.2(15)
	05 8(0)		101 4(14)
	95.8(9)		72 0(9)
$O_{(1)} = L_{1(2)} = O_{(5)}$	71.0(0)		69 5(7)
$O_{(1)} = U_{(2)} = W_{(2)}$	123.0(10)		69.1(7)
U(5)-LI(2)-IN(2)	126.0(14)	レ427~し41)~し4(4)	1 09.1(7)

TABLE 2. Bond Lengths and Angles for Compound 1

Bond	Bond length, Â	Bond	Bond length, Å
CoO	1.966(3)	Sim-On	1.622(4)(1.600(3))
	1.500(3)	Si(4)=O(5)	1.522(+)(1.500(3))
	1.979(3)	Si(5)=O(7)	1.649(4)(1.638(3))
	1.997(3)	Nov-Liv#2	2 121(11)(2 066(8))
Sim-Om	1.607(4)(1.600(3))	$\Gamma_{(2)} = \Omega_{(1)} = \Omega_{(2)}$	1.887(10)(1.037(5))
Sim-Oa	1.641(3)(1.643(3))		1.058(0)(1.001(8))
SiamCan	1.888(3)	$L_{i,i} = N_{i,i}$	2 101(10)(2 053(9))
Si(i) C(i)	1.000(3)	Li(1) (1(1)	2.101(10)(2.055(7))
Sin On	1.607(3)(1.596(3))	$Li_{(1)} = O_{(2)} \pi I$	1.875(0)(1.025(8))
Sign Og	1.667(3)(1.641(3))	$L_{(2)} = O_{(3)}$	1.075(9)(1.925(0))
$Si_{(2)} = O_{(2)}$	1.600(4)(1.587(3))	$L_{(2)} = O(4)$	2.074(10)(2.000(9))
$Si_{(3)} = O_{(4)}$	1.000(4)(1.587(5))	$L_{(2)} = N_{(4)}$	2.074(10)(2.011(9))
$SI_{(1)} = O_{(5)}$	1.035(4)(1.041(3))	Ll(2)-IN(3)	2.112(9)(1.996(9))
SI(4)-O(6)	1.018(4)(1.012(3))		
Bond	Bond angle, deg.	Bond	Bond angle, deg.
O(4)-CO(1)-O(7)	114.71(14)(114.85(14))	$Si_{(2)}-O_{(3)}-Li_{(2)}$	141.9(3)
O(4) CO(1) O(1)	134.28(15)(126.62(14))	$Si_{(2)} - O_{(3)} - Co_{(1)}$	121,27(16)
$O_{(7)} - Co_{(1)} - O_{(1)}$	89.49(13)(94.14(14))	Li ₍₂₎ -O ₍₃₎ -Co ₍₁₎	90.5(3)
O(4)-CO(1)-O(3)	88.56(13)(93.86(14))	Si(3)-O(4)-Co(1)	132.39(19)
$O_{(7)} - Co_{(1)} - O_{(3)}$	132.33(14)(125.6(2))	Si ₍₃₎ -O ₍₄₎ -Li ₍₂₎	138.8(3)
$O_{(1)}-Co_{(1)}-O_{(3)}$	103.35(13)(104.53(14))	Co(1)-O(4)-Li(2)	88.8(3)
$O_{(1)} = Si_{(1)} = O_{(2)}$	111.71(19)	Si(4)-O(6)-Si(5)	150.4(2)
O(3)-Si(2)-O(2)	111.26(19)	Si(5)-O(7)-Li(1)	135.7(4)
O(4)-Si(3)-O(5)	111.6(2)	Si(5)-O(7)-Co(1)	136.12(19)
O(6)-Si(4)-O(5)	110.84(19)	Li(1)-O(7)-Co(1	88.0(3)
O(7)-Si(5)-O(6)	112.1(2)	Si ₍₁₎ -O ₍₁₎ -Li ₍₁₎	142.0(4)
O(1)-Li(1)-O(7)	92.7(4)	Sim-Om-Com	120.67(18)
$O_{(1)}-Li_{(1)}-N_{(1)}$	118.4(5)	Li(1)-O(1)-Co(1)	89.8(3)
$O_{(7)}-Li_{(1)}-N_{(1)}$	115.5(5)	Si(1)-O(2)-Si(2)	131.9(2)
O(1)-Li(1)-N(2)#1	111.2(5)	Si(2)-O(3)-Li(2)	141.9(3)
O(7)-Li(1)-N(2)#1	118.9(5)	Si ₍₂₎ -O ₍₃₎ -Co ₍₁₎	121.27(16)
N ₍₁₎ -Li ₍₁₎ -N ₍₂₎ #1	101.3(4)	Li(2)-O(3)-CO(1)	90.5(3)
O(3)-Li(2)-O(4)	92.1(4)	Si(3)-O(4)-Co(1)	132.39(19)
O(3)-Li(2)-N(4)	112.6(5)	Si(3)-O(4)-Li(2)	138.8(3)
O(4)-Li(2)-N(4)	121.7(5)	Co(1)-O(4)-Li(2)	88.8(3)
$O_{(3)}-Li_{(2)}-N_{(3)}$	119.9(5)	Si(4)-O(5)-Si(3)	156.0(2)
O(4)-Li(2)-N(3)	111.1(4)	Si(4)-O(6)-Si(5)	150.4(2)
N(4)-Li(2)-N(3)	100.9(4)	Si(5)-O(7)-Li(1)	135.7(4)
Si(1)-O(1)-Li(1)	142.0(4)	Si(5)-O(7)-Co(1)	136.12(19)
Si(1)-O(1)-Co(1)	120.67(18)	Li(1)-O(7)-Co(1	88.0(3)
Li(1)-O(1)-Co(1)	89.8(3)	Li(1)-Co(1)-Li(2)	172.0(3)
Si(1)-O(2)-Si(2)	131.9(2)		

TABLE 3. Bond Lengths [Å] and Angles [deg.] for Compound 2 with Some Values in Parentheses for Compound 5 for Comparison

Symmetry transformations used to generate equivalent atoms: #1 x,y+1,z #2 x,y-1,z #3 -x,-y+2,-z #4 -x,-y+2,-z+1

Structural Features of $[{O(Ph_2SiO)_2}Co{O(Ph_2SiO)_3}-\mu-(LiPy_2)_2]$ (2). The molecular structure of 2 is shown in Fig. 2 and bond lengths and angles in Table 3. The four Co-O distances are very similar and close to those in the related compound $[Co{O(Ph_2SiO)_2}-\mu-(LiTMEDA)_2]$ [18] where there are two six-membered cobaltasiloxane rings. The cobalt atom is at the center of a flattened tetrahedron. The bond angles around the central cobalt atom vary in precisely the same way as those in the related magnesium compound 5 [17]. The *trans*-O-Co-O angles are about 7° wider and the *cis*-O-Co-O angles (within the CoO₂Li rings) are some 5° smaller than

Bond	Bond length, Å	Bond	Bond length, Å
CrOu #1	1 994(2) (1 987(7))	Six-Ou	1 644(3)
	1.774(2)(1.907(7))	Si(3)-O(5) Si(3)-C(3)	1.885(3)
$Cr_{12}=O_{12}\#1$	2 012(3) (1 985(6))	SiamCuu	1.800(2)
	2.012(3)		1.597(3)
$Cr_{(1)} = O_{(1)} # 2$	1.983(2)	$Si_{(4)} = O_{(6)}$	1.643(3)
$Cr_{(2)} = O_{(4)}$	1.983(2)	Si(4) C(3)	1.849(3)
	1.999(2)	Si(a) = C(a)	1.889(3)
$Cr_{(2)} = O_{(0)}$	1.999(2)		1.807(3)
Siture Out	1.590(3) (1.589(6))	$1 i_{1} = 0 = 41$	1.002(7)
Siu-On	1.646(3)		2 079(8)
Siu-Ca	1.010(3)	Lia-No.	2.075(8)
Sig-Co	1.883(3)	$1.i_{22} = 0.0 # 2$	1.870(8)
Sin On	1.598(3)	$Li_{(2)} = O_{(4)}$	1.903(7)
Sin-On	1.642(3)	$Li_{0} = N_{0} # 2$	2 072(8)
Sia-Cun	1.894(2)	Lio-No.#2	2.072(0)
Sia-Cup	1.901(3)	$O_{\alpha} = Li_{\alpha} # 1$	1.905(8)
Sig-Ou	1.601(3)	O_{40} -Li $_{20}$ #2	1.870(8)
51(3) (5(4)	1.001(-5)	0(4) 0(2)/2	1.670(6)
Bond	Bond angle, deg.	Bond	Bond angle, deg.
$O_{(1)}#I-Cr_{(1)}-O_{(1)}$	180.0 (180.0(3))	$O_{(1)}#I-Li_{(1)}-N_{(1)}$	108.8(4)
O(1)#1-Cr(1)=O(3)#1	94.70(11)(93.2(3))	$N_{(2)}-Li_{(1)}-N_{(1)}$	103.0(3)
$O_{(1)} - Cr_{(1)} - O_{(3)} #1$	85.30(11)(86.8(3))	O(4)#2-Li(2)-O(6)	91.4(3)
$O_{(1)}#1-Cr_{(1)}=O_{(3)}$	85.30(11)	O(4)#2-Li(2)-N(3)#2	117.2(4)
$O_{(1)} - Cr_{(1)} - O_{(3)}$	94.70(11)	O(6)-Li(2)-N(3)#2	118.7(4)
$O_{(3)}#1-Cr_{(1)}-O_{(3)}$	180.0	O(4)#2-Li(2)-N(4)#2	106.2(4)
Li ₍₁₎ –Cr ₍₁₎ –Li ₍₁₎ #1	179.999(1)	O(6)-Li(2)-N(4)#2	108.4(4)
O(4)#2-Cr(2)-O(4)	180.0	N ₍₃₎ #2-Li ₍₂₎ -Ng#2	112.7(4)
O(4)#2-Cr(2)-O(6)	85.40(10)	Si ₍₁₎ -O ₍₁₎ -Li ₍₁₎ #1	146.6(3)
O ₍₄₎ -Cr ₍₂₎ -O ₍₆₎	94.60(10)	$Si_{(1)}-O_{(1)}-Cr_{(1)}$	122.8(2)
O(4)#2-Cr(2)-O(6)#2	94.60(10)	$Li_{(1)}#1-O_{(1)}-Cr_{(1)}$	90.3(2)
O(4)-Cr(2)-O(6)#2	85.40(10)	$Si_{(2)} - O_{(2)} - Si_{(1)}$	124.3(2)
O(6)-Cr(2)-O(6)#2	180.0	Si ₍₂₎ -O ₍₃₎ -Li ₍₁₎	139.6(3)
Li ₍₂₎ #2-Cr ₍₂₎ -Li ₍₂₎	180.0	$Si_{(2)} - O_{(3)} - Cr_{(1)}$	124.0(2)
O(1)=Si(1)=O(2)	111.3(2)	$Li_{(1)} - O_{(3)} - Cr_{(1)}$	90.1(2)
O(3)-Si(2)-O(2)	110.39(14)	Si ₍₃₎ -O ₍₄₎ -Li ₍₂₎ #2	142.4(3)
O(4)-Si(3)-O(5)	111.5(2)	Si(3)-O(4)-Cr(2)	126.5(2)
O(()-Si(4)-O(5)	110.87(14)	$Li_{(2)}#2-O_{(4)}-Cr_{(2)}$	90.8(2)
$O_{(3)}$ -Li ₍₁₎ - $O_{(1)}$ #1	91.2(3)	Si ₍₄₎ -O ₍₅₎ -Si ₍₃₎	126.0(2)
O(3)-Li(1)-N(2)	121.1(4)	Si(4)-O(6)-Li(2)	137.7(3)
O(1)#1-Li(1)-N(2)	120.1(4)	Si(4)-O(6)-Cr(2)	126.06(14)
$O_{(3)} - Li_{(1)} - N_{(1)}$	112.5(4)	$Li_{(2)} - O_{(6)} - Cr_{(2)}$	89.4(2)

TABLE 4. Bond Lengths and Angles for Compound 3 with Comparative Values in Parentheses for $[Cr{O(Ph_2SiO)_2}_2-\mu-{Na(THF)_2}_2]$

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z #2 -x+1,-y,-z+1

in 5. Also as with 5 the 6- and 8-membered metallasiloxane rings in 2 are relatively planar but the ring twist is 58°. Within the metallasiloxane rings related Si–O bond distances and related angles at silicon and oxygen generally vary in a similar way in both the Co and Mg compounds 2 and 5. The presence of different metals at spiro sites affects angles within the 8-membered rings to a greater extent. Thus differences between the average Si–O–M angles in the 8-membered rings [134.26(19)° Co, 142.2(2)° Mg] are greater than in the 6-membered rings [120.97(17)° Co, 123.5(2)° Mg]. Likewise for the Si–O–Si angles the differences between the 8-membered rings [150.4(2)°, 156.0(2)° Co and 157.2(2)°, 160.5(2)° Mg] are marked compared to 6-membered rings [131.9(2)° Co and

133.2(2)° Mg]. Bite angles are very similar in both compounds and are wider for the 8-membered ring in both cases as expected. The geometry at lithium atom is very distorted tetrahedral with the (Si)O-Li-O(Si) angles close to 90° compensated by wide O-Li-N(Py) angles (~120°) as in related structures.

Structural Features of $[Cr{O(Ph_2SiO)_2}_2-\mu-(LiPy_2)_2]$ (3). The molecular structure of 3, one of two crystallographically distinct but very similar molecules in the unit cell, is shown in Fig. 3. Bond lengths and angles are reported in Table 4. As for the analogous sodium-bridged spirocyclic compound [20] there is square planar geometry at chromium atom in this compound with two coplanar 6-membered chromiasiloxane rings. The bond distances and angles in the central spirocyclic core are apparently unaffected by the change from THF-solvated sodium atom, to pyridine-solvated lithium atom which suggests that the stereochemical requirements of the chromium atom are dominant.

CONCLUSIONS

Our previous work on reactions between metal chlorides and the reagents $[O(Ph_2SiOM)_2]$ (M = Li or Na) suggested that ligand oligomerization or rearrangement was highly dependent on specific target metal centers. The structures we have isolated using Ph₂Si(OH)₂/BuLi(1:2) and different metal chlorides show that oligomerization from the silane diolate to disiloxanediolate (trisiloxanediolate in one case) is readily promoted. The ligands $(OSiPh_2OLiOH)^{2^{-}}$, $(OSiPh_2OSiPh_2O)^{2^{-}}$, and $(OSiPh_2OSiPh_2OSiPh_2O)^{2^{-}}$ have been found in metallasiloxane compounds derived from Ph₂Si(OH)₂/BuLi (1:2). So far no compound with the simple diolate Ph₂SiO₂^{-2⁻} has been isolated from Ph₂Si(OH)₂/BuLi (1:2). In comparison the ligands $(OSiPh_2O)^{2^{-}}$, $(OSiPh_2OSiPh_2O)^{2^{-}}$, and $(OSiPh_2OSiPh_2OSiPh_2O)^{2^{-}}$, are been found in metallasiloxane compounds derived from the diol have been found in metallasiloxane compounds derived from the diol (1:2). In comparison the ligands $(OSiPh_2O)^{2^{-}}$, $(OSiPh_2OSiPh_2O)^{2^{-}}$, and $(OSiPh_2OSiPh_2OSiPh_2O)^{2^{-}}$ have been found in metallasiloxane compounds derived from the diol Ph₂Si(OH)₂. Owing to the ill-defined nature of the reagent Ph₂Si(OH)₂/BuLi (1:2) it is not possible to assess whether the target metal center controls the ligand oligomerization or not. However as with metallasiloxanes derived from the well-defined reagent [O(Ph_2SiOLi)_2] there is no evidence for mixtures of metal compounds being formed in reactions between Ph₂Si(OH)₂/BuLi (1:2) and metal chlorides and product formation is apparently selective in each case.

EXPERIMENTAL

All manipulations were carried out under dry nitrogen atmosphere using standard Schlenk techniques. The compound Ph₂Si(OH)₂ (Aldrich) was heated gently under vacuum for several hours and then stored under nitrogen. IR spectra were recorded using a Perkin-Elmer 1720X spectrometer (either as nujol mulls between CsI plates, or neat with an ATR attachment). The IR spectrum of each of the compounds **1**, **2**, and **3** has a band around 1590 cm⁻¹ associated with the phenyl groups present, strong bands in the region of 950 cm⁻¹ are attributed unit to stretching and bending in the Si–O–M while overlapping bands in the region 1120-1000 cm⁻¹ are due to Si–O–Si stretching and bending. Elemental analyses were obtained from University College London. ¹H NMR spectra were recorded on a Bruker WH80 spectrometer with data listed in ppm downfield from SiMe₄. ²⁹Si and ⁷Li NMR spectra were recorded on a Bruker AMX600 spectrometer with data listed in ppm downfield from SiMe₄ and LiCl in D₂O, respectively. Compound **5** was prepared as previously described [17].

[Mg{O(Ph₂SiO)₂}₂]- μ -(LiPy)- μ -{(LiPy)₃(OH)(Cl)}] (1). A solution of MgCl₂·2THF (0.48 g, 2 mmol) in THF (10 cm³) was added dropwise to a stirred white suspension from Ph₂Si(OH)₂ (2.16 g, 10 mmol) in THF (10 cm³) and BuLi (12.5 cm³ of 1.6 mol·dm⁻³ in hexane; 20 mmol) at room temperature. The mixture cleared to pale yellow overnight. The organic solvents were removed and the residual white solid stirred in toluene (30 cm³). The filtered toluene solution was concentrated to one-third volume and then pyridine added till the solution became turbid (~2 cm³). Upon heating with an air gun this turbid mixture cleared and on standing at room temperature for 48 h gave colorless crystals (1.87 g, 75% based on magnesium chloride); mp 194-196°C. Found, %: C 64.2; H 5.3, N 3.9. C₆₈H₆₁N₄O₇Si₄Li₄MgCl. Calculated, %: C 65.6; H 4.9; N 4.5.

IR spectrum (nujol mull, cm⁻¹): 3400w 1595m, 1581w, 1435s, 1262m, 1118s, 993s, 965s, 801m, 743m, 743s, 625w, 534s.

¹H NMR spectrum (C₆D₆, δ): 6.83 (m, 8H, Py); 7.23 (m, 24H, Ph); 7.70 (m, 16H, Ph); 7.85 (m, 4H, Py); 8.00 (m, 8H, Py) (298 K). ⁷Li NMR spectrum (C₇D₈, δ): 0.36 (s) (297 K). ²⁹Si NMR spectrum (C₇D₈, δ): -41.50 (s) (300K).

To ensure sample homogeneity we took the precaution of measuring unit cells for several crystals from the bulk and in each case these were identical to 1.

 $[{O(Ph_2SiO)_2}Co{O(Ph_2SiO)_3}-\mu-(LiPy_2)_2]$ (2). A stirred suspension from Ph₂Si(OH)₂ (2.16 g, 10 mmol) in THF (10 cm³) and BuLi (12.5 cm³ of 1.6 mol·dm⁻³ in hexane; 20 mmol) in THF (40 cm³) was treated at -78°C with solid CoCl₂ (0.26 g, 2 mmol), brought gradually to room temperature and stirred for 48 h to give a lilac suspension. The solvent was removed and the residual solid was stirred in hot toluene (50 cm³) and then filtered. The toluene solution was concentrated and then treated with pyridine as for 1 above. On standing at 5°C for several days dark blue crystals were deposited (1.4 g, 47% based on CoCb); mp 197°C. Found, %: C 68.1; H 5.1; N 3.5. C₈₇H₇₈CoLi₂N₄O₇Si₅. Calculated, %: C 69.4; H 5.2; N 3.7 %.

IR spectrum (cm⁻¹): 2962m, 1592m, 1484w, 1440m, 1426m, 1259s, 1108-976 brs, 870w, 796s, 696s, 529s.

 $[Cr{O(Ph_2SiO)_2}_2-\mu-(LiPy_2)_2]$ (3). The procedure outlined above was carried out with solid CrCb (0.25 g, 2 mmol). A purple suspension was obtained when addition of CrCb was complete. After further work-up as above dark orange crystals were obtained from green toluene/pyridine solution (1.25g, 52% based on CrCb); mp 213°C. Found, %: C 65.2; H 5.0; N 3.5. C₆₈H₆₀CrLi₂N₄O₆Si₄. Calculated, %. C 67.6; H 5.0; N 4.6.

IR spectrum (cm⁻¹): 3061w, 1593m, 1426m 1110s, 1065w, 1036w, 947s, 740m, 695s, 623w.

 $[{O(Ph_2SiO)_2}Co{(OPh_2Si)_3O)_2}-\mu-(CoClPy)_2]$ ·Py (4). CoCl₂ (1.12 g, 8.68 mmol) in THF (15 cm³) was added dropwise to a solution of the magnesium compound 5 (4.34 mmol) in THF (40 cm³). The mixture was stirred for 48 h. Removal of the solvent followed by toluene pyridine work-up as described above gave blue crystals at room temperature (4.2 g, 65%); mp 235-237°C. Lithium flame test negative. Chloride test positive. Found, %: C 60.9; H 4.6; N2.8. C₇₅H₆₅Co₂Cl₂N₃O₈Si₅Mg. Calculated, %: C 60.5; H 4.4; N 2.8.

IR spectrum (nujol mull): 1654m, 1607m, 1590w, 1428s, 1304w, 1261m, 1114s, 1069m, 1033s, 1019s, 993s, 929s, 802m, 744s, 717s, 697s, 530s.

X-RAY CRYSTALLOGRAPHY.

Single crystal data. Single crystals were selected from the crops deposited and sealed in glass capillaries under argon without further drying. Cell refinement and data collection were performed on a Enraf-Nonius CAD4 diffractometer operating in the $\omega/2\theta$ scan mode using CAD-4/PC [22] and data reduction accomplished using XCAD4 [23]. The structures were solved by standard heavy atom techniques (SHELXS-97) and refined by least squares (on F^2) using SHELXL-97 [24]. In the final refinements anisotropic parameters were refined for all nonhydrogen atoms. In each case phenyl groups were treated as rigid hexagons (C-C, 1.395 Å; C-C-C, 120°) and hydrogen atoms were included at fixed positions (C-H, 0.93 Å). Data were corrected for absorption using an empirical method (ψ -scans) [25], with $T_{min} = 0.8152$, $T_{max} = 0.8517$ for (1); $T_{min} = 0.965$, $T_{max} = 0.998$ for (2) and $T_{min} = 0.9543$, $T_{max} = 1.00$ for (3). The molecular plots were produced with ORTEP-3 for windows [26].

We thank EPSRC for an ear-marked studentship to ML; and the University of London Intercollegiate NMR Research Service for ⁷Li and ²⁹Si NMR spectra.

REFERENCES

- 1. D. G. Ballard, N. Heap, E. Jones, B. T. Kilburn, and J. Wyatt, US Pat. 3,740,384.
- 2. A. M. Piotrowski and E. I. Band, EP 0423 872 A2.
- 3. M. Lazell, M. Motevalli, S. A. A. Shah, and A. C. Sullivan, J. Chem. Soc. Dalton Trans., 3363 (1997).
- 4. B. Laermann, M. Lazell, M. Motevalli, and A. C. Sullivan, J. Chem. Soc. Dalton Trans., 1263 (1997).

- 5. L. King and A. C. Sullivan, *Coord. Chem. Rev.*, (1999) in press.
- 6. M. Lazell, M. Motevalli, C. K. S. Simon, S. A. A. Shah, and A. C. Sullivan, J. Chem. Soc. Dalton Trans., 1449 (1996).
- 7. M. A. Hossain and M. B. Hursthouse, Inorg. Chim. Acta., 44, 259 (1980).
- 8. H. Puff, T. R Kok, P. Nauroth, and W. Schuh, J. Organomet. Chem., 281, 141 (1985).
- 9. M. Motevalli, D. Shah, S. A. A. Shah, and A. C. Sullivan, Polyhedron., 15, 2387 (1996).
- 10. E. Samuel, J. F. Harrod, M. J. McGlinchey, C. Cabestaing, and F. Robert, Inorg. Chem., 33, 1292 (1994).
- 11. M. B. Hursthouse and M. A. Hossain, Polyhedron., No. 3, 95 (1984).
- 12. J. Darr, S. R. Drake, S. R. Williams and A. M. Z. Slawin, J. Chem. Soc. Chem. Commun., 866 (1993).
- 13. I. Abrahams, C. Simon, M. Motevalli, S. A. A. Shah, and A. C. Sullivan, J. Organomet. Chem., 521, 301 (1996).
- M. B. Hursthouse, M. Altaf Hossain, M. A. Mazid, M. Motevalli, M. Sanganee, and A. C. Sullivan, J. Organomet. Chem., 381, 293 (1990).
- 15. D. Schmidte-Base and U. Klingebiel, Chem. Ber., 122, 815 (1989).
- 16. S. Schutte, U. Klingebiel, and D. Schmidte-Base, Z. Naturforsch. B., 48B, 263 (1993).
- 17. M. Motevalli, D. Shah, and A. C. Sullivan, J. Chem. Soc. Chem. Commun., 2427 (1994).
- M. B. Hursthouse, M. A. Mazid, M. Motevalli, M. Sanganee, and A. C. Sullivan, J. Organomet. Chem., 381, 43 (1990).
- 19. I. Abrahams, M. Motevalli, D. Shah, A. C. Sullivan, and P. Thornton, J. Chem. Soc. Chem. Commun., 1514 (1993).
- 20. M. Motevalli, M. Sanganee, P. D. Savage, S. A. A. Shah, and A. C. Sullivan, J. Chem. Soc., Chem. Commun., 1132 (1993).
- 21. M. Motevalli, D. Shah, and A. C. Sullivan, J. Chem. Soc. Dalton Trans., 2849 (1993).
- 22. Enraf-Nonius CAD-4/PC Software Version 15c, 1992, Enraf-Nonius, Delft, The Netherlands.
- 23. K. Harms, XCAD4. Program for data reduction, 1996, Philipps-Universität, Marburg, Germany.
- 24. G. M. Sheldrick, SHELX-97, Program for solution and Refinement of Crystal Structures, 1997, Univ. of Göttingen, Germany.
- 25. A. C. T. North, D. C. Phillips, and F. S. Mathews, Acta crystallogr., Sect. A., 42, 351 (1968).
- 26. L. J. Farrugia, ORTEP-3 for Windows, J. Appl. Cryst., 565 (1997).